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In situ rock is often saturated with fluid, the
presence of which affects both elastic parameters
and inelastic deformation processes. Techniques were
developed for testing fluid-saturated porous rock
under the limiting conditions of drained (long-
term), undrained (short-term) and unjacketed (solid
matrix) response in hydrostatic, axisymmetric and
plane-strain compression. Drained and undrained
poroelastic parameters, including bulk modulus,
Biot and Skempton coefficients, of Berea sandstone
were found to be stress dependent up to 35 MPa
mean stress, and approximately constant at higher
levels of loading. The unjacketed bulk modulus
was measured to be constant for pressure up to
60 MPa, and it appears to be larger than the
unjacketed pore bulk modulus. An elasto-plastic
constitutive model calibrated with parameters from
drained tests provided a first-order approximation of
undrained inelastic deformation: dilatant hardening
was observed due to pore pressure decrease during
inelastic deformation of rock specimens with constant
fluid content.

This article is part of the themed issue ‘Energy and
the subsurface’.

1. Introduction
The presence of pore fluid plays an important role
in a wide variety of geophysics and geoengineering
problems. These include earthquake precursory processes
[1,2], hydraulic fracturing [3–5], water-level changes
in wells and tide effects on compressible aquifers
[6,7], to name a few. Oil and gas exploration relies
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on knowledge of the compressibilities and related seismic velocities of rock to differentiate
between pore fluids [8,9]. Also, understanding the thermo-hydro-chemo-mechanical interactions
between the gas, the groundwater and the host or caprock is critical to evaluate the safety of
potential CO2 storage sites [10].

Two limiting time scales can be considered for the deformation of fluid-filled materials. If the
time scale of loading is rapid in comparison with that for diffusion so that the fluid mass in
a material element remains constant, then the response is termed undrained. The long-time or
drained response is the one for which the local pore fluid pressure is constant. Note that an elastic
fluid-saturated solid is stiffer when loading is rapid compared with the time scale of diffusion;
e.g. the undrained bulk modulus Ku ≥ K the drained modulus [11,12].

The theory of poroelasticity, which describes the elastic response of fluid-filled materials,
is attributed to Biot [13,14], who followed the work of Terzaghi [15] on one-dimensional
consolidation that accounted for the influence of pore fluid pressure on soil deformation. Biot [14]
developed the first rational theory for the three-dimensional mechanical behaviour of isotropic,
linearly elastic porous materials. Under the assumption of small strains, linear relationships
between stresses, strains, increment of fluid content and pore pressure were written, and four
poroelastic moduli, rather than two for standard isotropic elasticity, were introduced [16].
Gassmann [17] derived a relation between the elastic properties of an isotropic porous medium
with fluid-filled interconnected pores and the elastic properties of the same medium with empty
pores. His work became an important tool in the petroleum industry for interpreting seismic data
of sedimentary materials and differentiating between the pore fluids they contain.

Geertsma [18] summarized Biot’s and Gassmann’s theories and reformulated them in terms
of compressibilities, which, as he claimed, were easier to be measured. Geertsma [19] also
introduced the term poroelasticity with reference to ‘Biot’s work on the theory of the elasticity
and viscoelasticity of fluid-saturated porous solids’ and emphasized the similarity between
mathematical descriptions of macroscopic poroelasticity and thermoelasticity. Brown & Korringa
[20] generalized Gassmann’s equation for the case of non-homogeneous material. Their work
was used by Rice & Cleary [4], who greatly facilitated the analyses of problems involving
interaction between fluid and rock. With no special assumptions regarding the fluid and solid
compressibilities, the coupled stress and fluid-flow fields were formulated as an extension of the
Biot [14] theory. Detournay & Cheng [5] presented a seminal review of poroelasticity, as well
as analytical and numerical methods for solving some fundamental problems, and the various
approaches proposed in the literature were unified.

Depending on the stress state, the constitutive response of rock typically involves dilation—
incremental volume increase—as deformation becomes inelastic. When the rock is fluid-saturated
and the time scale does not allow drainage, suction is induced in the pore fluid, and by the
effective stress principle, the rock is dilatantly hardened over the resistance that it would exhibit
to a corresponding increment of drained deformation [12]. Further, coupling of deformation
with pore fluid diffusion introduces time dependence into the response of an otherwise rate-
independent solid. The aim of this study is to investigate poroelastic and inelastic deformation
of a porous, fluid-saturated rock under different limiting regimes. The emphasis is placed on
accurate force and displacement measurements to determine the parameters that govern material
response prior to failure.

2. Theoretical background

(a) Poroelastic relations
The notation and mechanical description of an isotropic poroelastic material from Detournay &
Cheng [5] are reviewed. The following is preserved in the expressions presented: ∂ is a partial
derivative, d represents an infinitesimal increment and these are used in parameter definitions.
Summation by repeating indices is assumed.
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Figure 1. (a–c) Sketch of drained, undrained and unjacketed boundary conditions for an element with external principal
stressesσ1,σ2 andσ3 and pore pressure p. (Online version in colour.)

The Biot model of a fluid-filled porous material is based on a coherent solid skeleton and a
freely moving pore fluid. A material element that occupies volume V in a chosen reference state
is considered. On the macroscopic scale of the porous body, this volume element is viewed as
an infinitesimal element subjected to locally homogeneous infinitesimal elastic deformation. If
the part of V taken by the interconnected pore space is denoted by Vφ , the pore volume, then
φo = Vφ/V represents the apparent porosity of the material element in the reference state; Vs =
V − Vφ is the part of V that is taken by the solid skeleton and non-connected pores, if present.
The material element is called a representative volume element (RVE) if it consists of a sufficient
volume of grains and void space such that a volume average of porosity approaches a stable
limit. Each stress and strain variable is defined by its average value over the RVE. The stress state
can be represented by the three-dimensional stress tensor σij and written in terms of principal
stresses σ1, σ2, σ3 (figure 1); the mean stress P = σii/3 = (σ1 + σ2 + σ3)/3. The pore pressure p in the
element is a scalar and is defined as the pressure in a hypothetical reservoir that is in equilibrium
with the element, such that no fluid exchange takes place between the reservoir and the material
element. Two strain quantities can be introduced: the small strain tensor εij and the variation
of fluid content ζ = −dmf/ρf, where ρf is the density of the fluid in the element and dmf is the
change of its mass over the element volume. Additionally, ζ can be expressed as the variation of
fluid volume per unit volume of porous material due to diffusive fluid mass transport:

∂ζ

∂t
= ∂qi

∂xi
, (2.1)

where t represents time and qi is the specific discharge vector, which describes the motion of the
fluid relative to the solid in the xi-direction. The first invariant of εij is called volume strain ε = εkk.
The sign convention of compression positive means that εkk is positive in compaction and positive
ζ corresponds to a loss of fluid by a porous solid.

The stress and the pore pressure are the conjugate quantities of the strain and the variation of
the fluid content, respectively. The work increment dW associated with the strain increments dεij
and dζ , in the presence of the stress σij and pore pressure p, is

dW = σijdεij + pdζ = εijdσij + ζdp. (2.2)

The latter equality is written by assuming reversibility (no energy dissipated during a closed
loading cycle) of the deformation process. This assumption was used by Biot [14], along with
linearity between the stress (σij, p) and the strain (εij, ζ ), to write the constitutive relations by
extending the known elastic expressions. Biot’s constitutive constants, which characterize the
coupling between the solid and fluid stress and strain, cannot be directly measured in laboratory
experiments, so they are not presented here. Instead, the response of a fluid-saturated porous
material is described in terms of two limiting behaviours, drained and undrained, the definitions
of which follow.
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The drained condition corresponds to the case of constant pore pressure: dp = 0. This condition
can be achieved by connecting a specimen to a large reservoir with constant fluid pressure p
(figure 1a). For simplification, the constitutive equations related to the drained material behaviour
are written only for the case of zero pore pressure p = 0. Drained bulk modulus K can be expressed
in terms of changes of the external mean stress with volume strain: K = V(dP/dV)|dp=0. If the case
of zero pore pressure is assumed, then from the linearity of the stress–strain relationships, the
volume strain and the variation in the fluid content can be written as

ε = P
K

(2.3)

and
ζ = αε, (2.4)

where the constant α is the ratio of the fluid volume gained or lost in a material element due to
loading, to the volume change of that element, when the pore pressure is preserved constant. As
the change of fluid volume in the element cannot be greater than the total volume change, and
both of them should have the same sign, 0 ≤ α ≤ 1. Note that α is exactly one if all of the volume
strain is due to pore volume change equal to the change of fluid volume. It means that the solid
phase can be considered incompressible, which is the case for soft soil, but not for rock, where the
pore volume change is comparable with the change of solid volume.

The undrained response characterizes the condition where the fluid is trapped in the porous
solid such that ζ = 0. The undrained test can be represented by the specimen, subjected to mean
stress P, with a casing or jacket around it, which does not allow fluid escaping or entering the
specimen but does allow the measurement of pore pressure (figure 1b). Undrained bulk modulus
Ku can be defined as Ku = V(dP/dV)|ζ=0. Because ζ is assumed to be a linear function of P and p,
the following relationship holds for the undrained case (ζ = 0):

p = BP, (2.5)

where B is the Skempton [21] coefficient (0 ≤ B ≤ 1). The undrained volumetric response can be
written as

ε = P
Ku

. (2.6)

The bulk modulus of the pore fluid Kf can also be defined as Kf = Vf (dp/dVf), where Vf is the
volume of the fluid.

For the drained condition, the increase in load is taken by the rock skeleton only. So the
specimen deforms more than for loading applied under the undrained condition, where the pore
fluid takes part of the load and also compresses, hence 0 ≤ K ≤ Ku. Generally, the drained and
undrained conditions are the limiting cases of slow and fast loading, respectively. Little fluid
exits or enters the RVE if the loading is rapid, hence ζ = 0 under the undrained condition. When
the fluid flow has enough time to equilibrate with the external boundary, the fluid pressure is
constant in the RVE, dp = 0, which is the characteristic of the drained response.

The constitutive equations of an isotropic poroelastic material conveniently are separated into
deviatoric strain eij = εij − εδij/3 and volumetric strain ε; δij is the Kronecker delta. The deviatoric
strain can be expressed through deviatoric stress (σij − Pδij):

eij = 1
2G

(σij − Pδij), (2.7)

where G is shear modulus. The volumetric strain is written based on the linearity of the stress–
strain relations and equations (2.3)–(2.6):

ε = 1
K

(P − αp) (2.8)

and
ζ = α

K

(
P − p

B

)
. (2.9)
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The volumetric relations can be written inversely as

P = Kuε − Mαζ (2.10)

and

p = M(αε − ζ ), (2.11)

where M is the inverse of the increase of the fluid content caused by the increase of the pore
pressure and is sometimes called the Biot modulus, M = (dp/dζ )|dε=0 = (Ku − K)/α2.

The presented constitutive model describes the response of the material as a whole, without
taking into account the individual contributions of its solid and fluid constituents. These
contributions can be considered if a micromechanical approach is used. For the needs of this
work, it is convenient to introduce the so-called unjacketed condition. The unjacketed test was
proposed by Biot & Willis [16] and it is characterized by equal increments in mean stress and pore
pressure, dP = dp (figure 1c): the specimen with no jacket or membrane is loaded by a fluid that
is allowed to penetrate inside the specimen and thus equilibrate the mean stress with the pore
pressure. The test can also be carried out on a jacketed specimen by imposing equal increments of
pore pressure and mean stress, without the requirement of the equality of P and p. Rice & Cleary
[4] introduced two other material constants: unjacketed bulk modulus K′

s = V(dP/dV)|dP=dp and
unjacketed pore volume bulk modulus K′′

s = Vφ(dP/dVφ)|dP=dp.
Generally, the coefficients K′

s and K′′
s are different; K′

s is related to the total volume change
in unjacketed loading, while K′′

s is associated with the change only in the pore volume Vφ .
However, under certain conditions, they both can be identified with the bulk modulus of the
solid constituent Ks = Vs(dP/dVs)|dP=dp. Assuming that the rock has fully connected pore space,
all points of the solid phase may be taken as elastically isotropic with the same local bulk modulus
Ks, and as both fluid and solid are chemically inert for the time scale of the tests, it can be
shown that Ks = K′

s = K′′
s [4]. However, this assumption may not be valid for sedimentary rock,

where intergranular cement and pore lining have different elastic properties [22,23]. A difference
between K′

s and K′′
s can also be a consequence of non-connected pore space [5].

If the constitutive response (2.8) is considered under the unjacketed condition (P = p), it can be
shown that α, referred to as the Biot coefficient [24], is

α = 1 − K
K′

s
. (2.12)

The relationship between drained and undrained bulk moduli is called the generalized Gassmann
equation [20] and can be written as

Ku = K + α2K
(1 − α)α + φoK(1/Kf − 1/K′′

s )
. (2.13)

Equations (2.8), (2.9) and (2.13) provide a general expression for the Skempton coefficient B:

B = Ku − K
αKu

= α

α + φoK(1/Kf − 1/K′′
s )

. (2.14)

From equations (2.12) and (2.14) and the range of α and B, the following inequality can be written:

0 ≤ K ≤ Ku ≤ K′
s. (2.15)

The emphasis on the volumetric response reflected the choice of bulk moduli K and Ku as a part
of fundamental set of material constants. Alternatively, drained and undrained Poisson’s ratios,
ν and νu, can be chosen for the presentation of the linear theory. They are related to K, Ku and G
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according to

ν = 3K − 2G
2(3K + G)

and νu = 3Ku − 2G
2(3Ku + G)

.

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

From inequality (2.15), it follows 0 ≤ ν ≤ νu ≤ 0.5, where νu = 0.5 and α = 1 holds for the case
of incompressible constituents, which is characterized by the strongest poroelastic effect, a
reasonable approximation for soft soil. Note that in the case of νu ∼= ν, the effect of undrained
loading disappears.

The Skempton pore pressure coefficient B and the Biot modulus M can also be expressed in
terms of ν and νu:

B = 3(νu − ν)
α(1 − 2ν)(1 + νu)

and M = 2G(νu − ν)
α2(1 − 2νu)(1 − 2ν)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.17)

The constitutive equations (2.8)–(2.11) can be written with G, α, ν and νu, and (2.8) is

2Gεij = σij − ν

1 + ν
σkkδij − α(1 − 2ν)

1 + ν
pδij, (2.18)

and it can be also presented as

σij − αpδij = 2Gεij + 2Gν

1 − 2ν
εδij. (2.19)

These relations are similar to those for a drained elastic solid with (σij − αpδij) playing the role
of an ‘effective stress’, so α is sometimes called the effective stress coefficient [24]. For the case of
p = 0, (2.18) and (2.19) reduce to the drained (or dry) constitutive relation.

If ζ is taken as the coupling term, then the constitutive expressions become

2G
(

εij − B
3

ζ δij

)
= σij − νu

1 + νu
σkkδij (2.20)

and

σij = 2Gεij + 2Gνu

1 − 2νu
εδij − αMζ δij. (2.21)

Equations (2.18)–(2.21) clearly show the elastic character of the poroelastic material in its two
limiting behaviours, drained (p = 0) and undrained (ζ = 0).

(b) Inelastic response
The constitutive model chosen for describing the inelastic response of fluid-saturated rock was
formulated by Rice [12] for the plane-strain deformation state of confined shearing. It illustrates
the hardening effect of dilatancy-induced pore pressure reduction. The model was reformulated
by Rudnicki [25] in terms of poroelastic parameters for rock subjected to pore pressure p, shear
stress τ and constant mean stress P. The model extended for the case of dP �= 0 is presented here.

For stress increments dτ , d(P − p) that involve continued inelastic deformation, the increments
of shear strain dγ and volume strain dε (compression positive) are

dγ = dτ

G
+ dγ p (2.22)

and

dε = dP
K

+ dεp, (2.23)

where dγ p and dεp are the increments of inelastic shear and volume strain, respectively. An
increase in mean stress inhibits inelastic deformation in brittle rock. Thus, the inelastic increment
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of shear strain takes the form

dγ p = dτ − μdP
H

, (2.24)

where H is an inelastic hardening modulus and μ is a friction parameter, which can be measured
as the local slope of the yield surface separating elastic and inelastic states in the plane of τ and
P − p. For the drained response (dp = 0), dτ can be written as

dτ = H
1 + H/G

dγ + μ

1 + H/G
dP. (2.25)

The inelastic volume strain, negative for dilating rock, arises from processes that accompany
inelastic shear and its increment is given by β, the dilatancy factor (β < 0 for compaction):

dεp = −β · dγ p. (2.26)

To include the effects of pore fluid pressure, the total mean stress is replaced by the effective
mean stress. For elastic deformation, the effective mean stress is written in Biot’s form: P − αp
(equation (2.8)). For inelastic deformation arising from opening and sliding of microcracks with
small contact areas, Rice [26] has shown that the appropriate form of the effective mean stress
is the Terzaghi effective pressure P′ = P − p. This deduction is consistent with experimental
observations on inelastic properties of brittle rock [11]. Thus, the increments of shear and volume
strain are

dγ = dτ

G
+ [dτ − μ(dP − dp)]

H
(2.27)

and

dε = dP − αdp
K

− β[dτ − μ(dP − dp)]
H

. (2.28)

The inelastic variation in the fluid content ζp was shown to be the plastic dilatancy: ζp = dεp [26].
The total ζ is the sum of its elastic and inelastic increments; hence equations (2.9) and (2.14) are
extended for the case of current porosity (φ instead of φo):

ζ = α(dP − dp)
K

− φdp
(

1
Kf

− 1
K′′

s

)
+ dεp. (2.29)

For undrained response, ζ = 0 in (2.29) and considering (2.28) yields

dp = −βKeff

H + μβKeff
dτ + αKeffH/K + μβKeff

H + μβKeff
dP, (2.30)

where Keff can be written as
1

Keff
= φ

(
1
Kf

− 1
K′′

s

)
+ α

K
. (2.31)

Therefore, for dilatant inelastic deformation (β > 0), the pore fluid pressure tends to decrease.
When (2.30) is substituted into (2.27), the result is

dτ = (H + μβKeff)
1 + (H + μβKeff)/G

dγ + μ(1 − αKeff/K)
1 + (H + μβKeff)/G

dP. (2.32)

If dP = 0 in (2.25), (2.30) and (2.32), then the presented model is the same as Rudnicki [25], and
because the hardening modulus has been augmented by the term μβKeff in (2.32) compared with
the drained case (2.25), the response is stiffer and the rock is said to be dilatantly hardened.
If the mean stress is changing during the deformation, then the hardening effect is not clearly
pronounced and is dependent on the value of (1 − αKeff/K). The parameter Keff = Keff(P′) is stress
dependent, and its development with Terzaghi effective mean stress is evaluated, and along with
the other material constants, used to determine undrained response.
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3. Experimental methods

(a) Hydrostatic compression
One of the simplest tests for measurements of the bulk material properties is hydrostatic
compression. Specimens instrumented with sets of strain rosettes can be placed inside a pressure
chamber and subjected to mean stress P (figure 2a). Volume strain ε can be calculated as the
trace of the three-dimensional strain tensor εij (the first invariant), and hence the measurements
of the strains in any three perpendicular directions x, y, z are enough for determining
ε = εxx + εyy + εzz = εd1 + εd2 + εd3 .

Jacketed and unjacketed hydrostatic compression tests are performed on prismatic rock
specimens instrumented with sets of strain rosettes. Dry sandstone specimens covered with
polyurethane are placed inside a pressure chamber and loaded to 60 MPa. Measured jacketed bulk
modulus K can be considered as the drained bulk modulus of the material for the special case of
zero pore pressure (p = 0). After that, the jacket is removed and the confining fluid is allowed
to penetrate into the rock. Hydraulic oil is used as the confining fluid because it has no electrical
effect on strain gauge connections and no chemical effect on the tested rock in the short term. After
at least 24 h of saturation at 20–30 MPa pore pressure, unjacketed loading (P = p and �P = �p) up
to 60 MPa and unloading are performed. Here � designates increments of quantities that are
measured experimentally. The unjacketed bulk modulus is then calculated from measurements of
volume strain.

(b) Plane-strain and axisymmetric compression
Drained and undrained compression experiments are conducted with a Vardoulakis–
Goldscheider type of plane-strain apparatus [27,28] specifically modified and calibrated for
testing fluid-saturated rock [29]. Prismatic specimens, 100 × 87 × 44 mm, are covered with
polyurethane and wedged inside the stiff frame in a way that the stress in the plane-strain
direction is higher than the desired cell pressure. Generally, the frame restricts ε2 (it is two orders
of magnitude smaller than ε1) and thus applies the intermediate principal stress σ2. Deformation
of the frame is measured by strain gauges and can be related to the deformation of the specimen in
that direction. Major principal stress σ1 is applied in the vertical (axial) direction and is called axial
stress, minor principal stress σ3 is applied laterally by the confining fluid and is called cell pressure
(figure 2b). Lateral and axial deformations are accurately measured by sets of linear variable
differential transformers (LVDTs) and allow the calculation of strains ε1 and ε3 aligned with the
major and minor principal stresses. The intermediate principal stress cannot be controlled, but it
can be calculated from generalized Hooke’s law for an isotropic linearly elastic solid:

σ2 = Eε2 + ν(σ1 + σ3). (3.1)

Based on wave velocity measurements up to peak stress, the elastic parameters in the plane-strain
direction are not affected appreciably [29].

Performing a test at constant confining pressure (�σ3 = 0) and taking the sign convention of
compression positive, Young’s modulus E and Poisson’s ratio ν are

E = �σ1
�ε1 − 2�ε3

(�ε1 − �ε3)
2

and ν = −�ε3

�ε1 − �ε3
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

For plane problems, it is convenient to introduce the invariants named (i) average stress s = (σ1 +
σ3)/2, (ii) shear stress t = (σ1 − σ3)/2, (iii) volume strain ε = (ε1 + ε3)/2, and (iv) shear strain γ =
(ε1 − ε3)/2. This set of invariants satisfies the requirement of preserving the work increment dW
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Figure 2. (a–c) Experimental configurations for the hydrostatic, plane-strain and axisymmetric (triaxial) compression tests
with applied principal stresses, pore pressure and corresponding strains. (Online version in colour.)

constant while changing the coordinate system:

dW = σ1dε1 + σ2dε2 + σ3dε3 = sdε + tdγ . (3.3)

Generalized Hooke’s law for plane strain becomes

�ε = 2(1 + ν)
3K

�s

and �γ = 1
G

�t.

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

Hence drained and undrained bulk moduli K and Ku and shear modulus G can be determined.
Because change in pore pressure does not affect the shear stress, drained and undrained shear
moduli for isotropic rock are equal. Measurements of K then allow the calculation of the
unjacketed bulk modulus K′

s.
A drained test can be performed by maintaining the pore pressure in the specimen constant;

this condition is applied and preserved by connecting the pore-water lines to a microprocessor-
based hydraulic pump that maintains water pressure at a constant value, within a tolerance of
0.01 MPa. By closing the inlet and drainage valves (figure 2b) and thus keeping the mass of the
fluid in the specimen constant, the undrained testing condition can be achieved. Once ν, E, νu and
Eu are obtained from drained and undrained plane-strain tests, other parameters such as K, Ku

and G can be calculated. Another parameter that can be measured under the undrained condition
is the Skempton coefficient B. The detailed description of the saturation process and measurement
of B is given in §3e.

Another geometry that allows direct measurements of applied principal stresses and
corresponding strains is a cylindrical specimen tested in conventional triaxial (axisymmetric)
compression (figure 2c). The plane-strain apparatus was modified to allow testing of a cylindrical
specimen (H = 104.0 mm, D = 50.8 mm), in the chamber filled with hydraulic oil. In conventional
triaxial compression, the major principal stress σ1 = σaxial is applied axially while the intermediate
and minimum principal stresses are applied in the radial direction by the confining fluid; thus
σ2 = σ3 = σradial and σ3 is called the cell pressure. Axial strain ε1 is measured by strain gauges
ε1 = εaxial and LVDTs; tangential and radial strains εθ and εr are equal to each other and are
measured by lateral strain gauges: εθ = εr = ε2 = ε3 = εlateral (figure 2c). For this geometry, mean
stress P = (σ1 + 2σ3)/3 and volume strain ε = ε1 + 2ε3.

Because application and measurement of the three principal stresses and corresponding strains
are straightforward in conventional triaxial compression, unjacketed test can be conducted by
applying increments of pore pressure equal to the increments in the mean stress: �p = �P.
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Drained and undrained compression are performed by preserving the same boundary conditions
as in plane-strain compression. The bulk moduli related to these three limiting states, i.e.
unjacketed K′

s, drained K and undrained Ku, can be measured by applying hydrostatic loading
to the cylindrical specimens and recording the corresponding volume strain and provide the
calculation of the other poroelastic parameters from equations (2.12)–(2.14). If axial and cell
pressures are applied separately, drained and undrained Young’s moduli and Poisson’s ratios
can also be measured.

Moreover, performing plane-strain or axisymmetric loading under drained conditions and
assuming full saturation of the rock, such that the volume of the fluid in the pores is equal to
the pore volume of the specimen, the volume of the fluid drained away from it during elastic
deformation can be precisely measured. Following the definition of α (equation (2.4)), it is possible
to calculate α as the ratio between the drained fluid volume �Vf and the change in specimen
volume �V [5]:

α = �Vf

�V
. (3.5)

Additionally, K′′
s can be measured by performing an unjacketed test (dP = dp) under axisymmetric

conditions. Following the suggestion by Cheng [30] and accounting for the compressibility of pore
pressure tubing and controller CL+M, fluid volume expelled or injected in the rock due to loading
or unloading can be written as

−�Vf

�p
= (VL + Vm) CL+M + VL + Vm + φV

Kf
− φV

K′′
s

, (3.6)

where VL and Vm are the fluid volumes in the pore water lines and pore pressure controller,
respectively. These parameters are discussed in §3c. Directly measured K′′

s has not been widely
reported.

(c) Drainage system
In plane-strain and axisymmetric compression experiments with fluid-saturated rock, the
specimen is connected to the drainage system of the cell and also to pore pressure transducers
(figure 2b,c). As the drainage system has a non-zero volume filled with water, it experiences
volume changes due to its compressibility if pore pressure is changing, which is the case of an
undrained test. The variations of the volume of the drainage system and of the fluid content
induce fluid flow into or out of the specimen to achieve pressure equilibrium between the
specimen and the drainage system. This fluid mass exchange modifies measured pore pressure
and hence measured strains. Wissa [31] and Bishop [32] modified the expression for the Skempton
coefficient B to include terms representing the compressibility of the pore pressure system:

B = 1
[(�p/�P)measured]−1 − (VL/V)K/αKf − K(CL + CM)/αV

, (3.7)

where VL is the volume of the fluid in the pore-water lines, CL is the compressibility of the pore-
water lines and CM is the compressibility of the pore pressure measuring element. Note that
CL+M from equation (3.6) is larger than CL + CM, because in the former case the pore pressure
controller serves as the pressure measuring element instead of the pressure transducer in the latter
case. Several researchers [32–34] noted that for modern high-pressure stainless steel tubing and
pressure transducers, the main contribution (more than 95%) to the correction term comes from
the extra fluid volume in the system VL, which is confirmed by calibration tests showing that
the third term in the denominator of the right-hand side of (3.7) is less than 0.01. Consequently,
only the first two terms are considered and VL is measured to be 14 ml for the plane-strain
configuration (typical specimen volume V = 380 ml) and 12 ml in axisymmetric compression
(V = 210 ml). Ghabezloo & Sulem [34] also introduced extra correction terms due to the effect
of temperature on the drainage system and pore fluid density, but these are not considered in our
case, as all tests were performed at constant room temperature (24◦C). The corrected expression
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for undrained bulk modulus, which can be derived by combining equations (2.14) and (3.7) is
obtained [34]:

Ku = K

⎛
⎝1 −

[(
1 − K

Kmeasured
u

)−1
− VL

V
K

α2Kf

]−1
⎞
⎠

−1

. (3.8)

Analogously, expressions for corrected undrained Poisson’s ratio and Young’s modulus can be
written using equations (2.17) and relationships between elastic constants:

νu = ν +
(

1

νmeasured
u − ν

− VL

V
3K

α2Kf(1 − 2ν)(1 + ν)

)−1
(3.9)

and

Eu = 3

⎡
⎣

⎛
⎝1 −

[(
1 + 3K

G
− 9K

Emeasured
u

)−1
− VL

V
K

α2Kf

]−1
⎞
⎠

/
3K + 1

G

⎤
⎦

−1

. (3.10)

(d) Berea sandstone
Berea sandstone is a fine-grained (0.12–0.25 mm), well-compacted, cross-bedded sandstone with
a dominant pore diameter of 20 µm. It mainly consists of sub-rounded to rounded quartz grains,
approximately 90% of solid volume, K-feldspar (approx. 7%), calcite (approx. 1%), iron oxide
(approx. 0.5%) and traces of other minerals. Cementation of the sandstone occurs mainly as
interstitial microquartz and syntaxial quartz overgrowths. The rock is light grey with closely
spaced (approx. 5 mm) planar bedding surfaces clearly demarked by laminations of rust-red
iron oxides. The material has interconnected porosity φo = 0.23 and intrinsic permeability k = 4 ×
10−14 m2 (measured perpendicular to the beds at P′ = 5 MPa), which allows studying deformation
of fluid-saturated porous rock at reasonable time scales. A single block, 305 × 305 × 245 mm
with density ρ = 2060 kg m−3 was used to fabricate all specimens. Uniaxial compressive strength
(UCS) tests were performed on six right cylindrical specimens, height H = 105 mm and diameter
D = 50 mm, prepared in accordance with ISRM standards [35] and loaded at an axial displacement
rate of 5 × 10−4 mm s−1. Axial and tangential strains were monitored by foil strain gauges
attached to one side of a specimen to determine E and ν. An opposite side was ground and
painted so that the digital image correlation (DIC) technique could be used for calculation of the
displacement field [36]. The UCS measured in the direction perpendicular to the bedding planes
was found to be 41–43 MPa, which is 7–8% larger than the one along the beds. Young’s modulus
and Poisson’s ratio measured by strain gauges and calculated by the DIC method were found to
be consistent, with E = 11–13 GPa and ν = 0.31.

The characteristic time for dissipation of the induced pore pressure in a specimen with a
characteristic length L drained at two ends is of order L2/4c, where c is the diffusivity coefficient
[5], which can be expressed by the permeability k, fluid viscosity μ and poroelastic parameters:

c = 2kG(1 − ν)(νu − ν)
μα2(1 − 2ν)2(1 − νu)

. (3.11)

Values of c for water-saturated Berea sandstone are of the order of 0.1 m2 s−1. The characteristic
time scale for equilibration of pore pressure inside the rock is approximately 0.1 s for water-filled
sandstone and approximately 10 s for oil-filled sandstone, which is significantly smaller than the
time scales of the reported tests (1000 s or more).

(e) Saturation
Even a small variation in the degree of saturation strongly influences the bulk modulus of the
fluid and hence Ku and B as indicated by equations (2.13) and (2.14). The back pressure saturation
technique, described in [37], was implemented: after applying desired mean stress and flushing
deaired water through the rock until the steady-state flow was achieved and a few pore volumes
of water go through the specimen, increments of pore (or back) pressure were applied while
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keeping the Terzaghi effective pressure P′ = P − p approximately the same. The purpose of the
back pressure technique is to achieve 100% saturation by forcing any gas into solution of the pore
water. Increase of the pore pressure in a partially saturated specimen affects the volume of the
gas in the pores in two ways: (i) by direct compression, the gas is reduced in volume according
to Boyle’s law; (ii) by application of a higher pressure, additional amounts of gas are dissolved in
the pore water in accordance with Henry’s law of solubility [38]. Wissa [31] suggested a method
to check if a very stiff soil specimen is fully saturated by determining Skempton’s B coefficient
at gradually increasing back pressures while keeping the Terzaghi effective mean stress constant.
If the rock is not fully saturated, then the B-value will be increasing with increasing pressure,
as more air is forced into solution. A measured B-value that is constant and independent of the
magnitude of the back pressure indicates full saturation. Once the air is driven into solution, the
air–water mixture behaves as a fluid with a bulk modulus equal to that of pure water [39], so
dissolved air in the water has no influence on Kf. Hence, pore fluid bulk modulus becomes a
fixed parameter and can be used in calculation of some other poroelastic moduli. In the case of a
specimen fully saturated with water, Kf = Kwater = 2.24 GPa.

Calculation of the Skempton coefficient B is not straightforward under a plane-strain
condition, because the intermediate principal stress is not measured directly, but calculated with
the knowledge of elastic parameters (equation (3.1)). The specimen size was chosen so that when
equal increments in axial stress �σ1 and cell pressure �σ3 were applied, the frame deformation
due to the stress increment applied by the specimen was compensated by the negative strain on
the inner side of the frame due to the increase in cell pressure; according to Lame’s solution, the
inner part compresses due to equal pressure applied on the inside and outside of the cylinder. So,
�ε2 = 0 in equation (3.1) and the expression for the measured B takes the form

Bmeasured =
(

�p
�P

)measured
= 3�p

(1 + ν̃)(�σ1 + �σ3)
, (3.12)

where ν̃ is the current Poisson’s ratio of the rock and it changes from ν in dry (or drained)
condition to νu upon saturation, while νu > ν. When the undrained elastic loading is performed
on the saturated specimen, νu independent of B-values can be calculated from the plane-strain
compression data. The pore pressure increment will increase with growing back pressure because
the degree of saturation is augmented and consequently the bulk modulus of the pore fluid
increases as the back pressure is growing [31]. When �p becomes the same for each increment
�σ1 = �σ3 = const., the rock is considered to be saturated. Measurement of B is direct for
cylindrical specimens tested in conventional triaxial compression: as hydrostatic pressure is
applied, �P = �σ1 = �σ2 = �σ3.

The B-values (equation (3.7)) for axisymmetric compression tests conducted at P′ = 5 MPa
are presented in figure 3, along with the variation of P-wave velocity cp. The maximum value
was B = 0.61, while for plane-strain compression conducted at P′ = 5 MPa, the maximum was
B = 0.58. This difference in the results is not due to experimental error but to anisotropy of the
material and loading. As explained in §3b, pure hydrostatic loading cannot be applied in plane-
strain testing because, by definition, the intermediate principal stress σy limits deformation and
is not controlled. Thus, when �σ1 = �σ3 is applied, some deviatoric load is still present and
slight anisotropic material behaviour affects the results [40]. The time scale of the saturation
process depends on the geometry of the specimens and applied pressure gradients. The prismatic
specimen of Berea sandstone was fully saturated within 1 day with application of p > 4 MPa
(P′ = 5 MPa). However, when small back pressure increments (0.1 MPa) were applied for 10 days,
the rock was fully saturated at p = 1.3 MPa (P′ = 1 MPa).

The alternative way to check saturation of a laboratory specimen is based on the observation
that P-waves propagate in saturated geomaterials with a velocity that is strongly affected by
water filling the voids [41]. Strachan [42] suggested the following criterion for ensuring full
saturation: P-wave velocity in the saturated material becomes constant with increasing back
pressure at constant Terzaghi effective mean stress. Two sensors were attached to the opposite
sides of a prismatic specimen and P-wave velocity was measured during the saturation process
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Figure 3. Change in the Skempton coefficient B and P-wave velocity with saturation at P′ = 5 MPa. (Online version in colour.)

at P′ = 5 MPa (figure 3). It can be seen that the velocity is increasing with the back pressure
and becomes constant when p exceeds 4 MPa, which supports the proposed B-check method in
achieving full saturation.

For unjacketed hydrostatic compression, the specimens were subjected to a high cell pressure
(60 MPa), which was kept for a few hours to provide full saturation. Mercury intrusion
porosimetry (MIP) tests on the Berea sandstone indicated that the rock was fully saturated with
mercury (a non-wetting fluid) at pressures above 26 MPa, meaning that the minimum pore throat
diameter is 0.027 µm. It can be expected that in the case of oil injection (wetting fluid for air-
filled sandstone), full saturation can be reached at pore pressures not higher than 26 MPa and the
unjacketed response (§4a) shows that this technique guaranteed satisfactory results.

4. Results and discussion

(a) Poroelastic parameters
Three prismatic 53 × 35 × 35 mm specimens were hydrostatically loaded and unloaded under
jacketed and then unjacketed conditions. Linear strain measured in the direction perpendicular
to bedding is 5–8% smaller than linear strain along the beds, which confirms a slight material
anisotropy. Bulk moduli calculated from jacketed hydrostatic compression tests (in unloading)
are found to be increasing with pressure: K = 5 GPa for P = 2 MPa, K = 7 GPa at P = 5 MPa and
K = 13 GPa (and constant) when mean stress exceeded 30 MPa (figure 4). If the line corresponding
to the constant slope of the dry compression curve is continued to intersect with the x-axis, the
porosity of unstressed rock related only to the cracks that can be closed [43] is determined to be
0.003. The unjacketed bulk modulus is measured to be constant for pressures from 1 to 60 MPa:
K′

s = 29.4–30.9 GPa. A fused quartz specimen was tested and its volumetric strain response is
linear up to P = 60 MPa, with Kquartz = 37.0 GPa (figure 4).

Prismatic and cylindrical specimens of Berea sandstone were cut and then precisely ground
from the same block in the same direction, such that the axial load was applied perpendicular
to the bedding planes. The range of values for poroelastic parameters measured in eight plane-
strain and two axisymmetric compression tests at P′ = 5.0 MPa are presented in table 1. Reported
plane-strain K and Ku values are obtained from calculation of total volume strain (including ε2)
caused by the increase in total mean stress. All reported undrained parameters are corrected for
the compressibility of the drainage system (equations (3.7)–(3.10)), α in the calculated column is
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Table 1. Poroelastic parameters measured at P′ = 5 MPa in plane-strain compression (PS) and axisymmetric (triaxial)
compression (TC).

measured calculated
test type K (GPa) Ku (GPa) K ′

s (GPa) B E (GPa) Eu (GPa) ν νu α G (GPa) M (GPa)
PS 9.4–10.0 14.6–16.3 — 0.58 10.8–11.3 13.7–15.1 0.30–0.32 0.35–0.36 — 4.1–4.3 —

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TC 9.8–10.1 17.8–18.2 29.1–29.4 0.61 10.0–10.7 14.9–15.7 0.32–0.33 0.36–0.37 0.65–0.67 3.8–4.1 17.2–19.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

obtained from measured K and K′
s values (equation (2.12)), G values come from measured drained

E and ν and M is calculated from K, Ku and α. An estimate of the Biot coefficient α was also
attempted by measuring the change in pore volume from the fluid expelled from the specimen
(equation (3.5)). The accuracy of the fluid volume measurements at pore pressures above 2 MPa
is ±0.02 ml, which is of the same order as measured drained water volumes due to application of
�P = 5 MPa in plane-strain and axisymmetric compression tests. Experiments at lower pressures
(P = 2.0–2.5 MPa and p = 1.5 MPa) provide α = 0.86.

Additionally, the evolution of drained and undrained bulk moduli K and Ku, Skempton B
coefficient and Biot α coefficient (calculated from equation (2.12) for K′

s = 30 GPa) with Terzaghi
effective pressure P′ was studied in hydrostatic triaxial (axisymmetric) compression unloading
tests performed on fully saturated specimens for p = 4–5 MPa. The obtained parameters are
reported in table 2 and figure 5a,b, along with the experimental errors. Changing the loading
rate two orders of magnitude (from 10−6 s−1 to 10−4 s−1) did not influence the drained (K)
or undrained (B and Ku) properties. In terms of load history, the parameters measured in
the first unloading cycle are approximately the same as those measured in the consecutive
loading–unloading cycles.

The reported values of the unjacketed bulk modulus K′
s = 29.1–30.9 GPa are smaller than the

measured bulk modulus of quartz Kquartz = 37.0 GPa, where it is often assumed Ks = K′
s = K′′

s
for sandstones [4,33]. To investigate the observed difference, the microstructure was viewed in
thin sections of the sandstone vacuum-impregnated with epoxy stained dye, both black and
fluorescent. The analysis showed that some pores were not filled by the epoxy and hence
contributed to the non-connected porosity. Precise measurements [44] of solid (ρ = 2740 kg m−3)
and bulk density (ρ = 2060 kg m−3) of the rock revealed that the total porosity of the Berea
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sandstone is equal to 0.25, which is larger than the interconnected porosity φo = 0.23 measured
consistently by vacuum saturation and MIP methods. The presence of non-connected pore
space causes K′

s < Kquartz and the assumption of Kquartz = K′
s = K′′

s may not be applicable for the
tested rock.

Hydrostatic compression tests also show that the dry bulk modulus of Berea sandstone is
a stress-dependent parameter at low mean stress and reaches its constant value K = 13 GPa
only when P > 35 MPa. Because some other parameters, such as Ku, B and α, are dependent
on dry rock properties (e.g. K), the material response can be treated as poroelastic and stress
independent only at mean stresses greater than 35 MPa. However, the apparatus used for drained
and undrained testing do not allow application of high (>24 MPa) hydrostatic pressure and hence
most poroelastic parameters were observed to be stress dependent.

Figure 5 and table 2 illustrate the dependence of poroelastic parameters on the Terzaghi
effective pressure P′ = P − p, which is chosen as the simplest form of coupling mean stress P and
pore pressure p. However, the question arises as to whether the magnitude of P′ is the proper
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Table 2. Poroelastic parameters K , Ku, B (measured in hydrostatic axisymmetric compression) and α (calculated for K ′
s =

30 GPa) at various Terzaghi effective pressures P′ = P − p (measured at full saturation for p= 4–5 MPa).

P′ = P − p (MPa) K (GPa) Ku (GPa) B α

0.5 4.8 13.3 0.91 0.86
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 6.7 15.1 0.80 0.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 8.2 16.3 0.71 0.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 9.1 17.1 0.65 0.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 9.8 17.8 0.61 0.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 10.0 18.3 0.58 0.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 10.2 18.6 0.55 0.66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 10.4 18.8 0.51 0.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 10.5 19.0 0.49 0.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 11.0 — — 0.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 11.3 20.8 0.40 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 11.5 20.9 0.38 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

governing parameter for the measured poroelastic moduli, meaning that if P and p are varied but
P − p is preserved constant, the moduli should not change. The elastic change in total specimen
volume was shown to be controlled (equations (2.8) and (2.19)) by the magnitude of P − αp.
Berryman [45] derived cumbersome effective stress expressions for porosity and permeability
and demonstrated from the available experimental data that pore pressure is merely influencing
changes in the volume of solid constituents. Todd & Simmons [46] suggested the following
empirical form for expressing a small increment in any poroelastic parameter N(P′, p), e.g. bulk
modulus, caused by a small change in pore pressure:

dN = ∂N
∂P′

∣∣∣∣
dp=0

(dP − ndp), (4.1)

where n is

n = 1 − ∂N
∂p

∣∣∣∣
dP′=0

/
∂N
∂P′

∣∣∣∣
dp=0

. (4.2)

Following this approach, it can be shown from our data that the stress dependence of the
Skempton coefficient B can be described through the Terzaghi effective pressure P′, because
changes in pore pressure at full saturation do not produce changes in B if dP′ = 0. The same is
true for the drained bulk modulus K, but making a conclusive statement on stress dependence of
the undrained bulk modulus Ku and the Biot coefficient α requires further testing.

From the results reported in tables 1 and 2, it can be seen that inequalities 0 ≤ K ≤ Ku ≤ K′
s and

0 ≤ ν ≤ νu ≤ 0.5 are preserved. Results of the drained compression tests indicate approximately
the same value for Poisson’s ratio ν = 0.30–0.32 but a lower value of Young’s modulus
E = 10–11 GPa than those obtained in dry uniaxial compression tests. Also, dry bulk modulus
measured at P = 5 MPa in the hydrostatic jacketed compression is smaller than the one calculated
from drained plane-strain and triaxial compression data: K = 9.4–10.1 GPa. These discrepancies
between dry and drained parameters might be related to the different type of loading applied
in those tests and its effect on closing cracks in rock. Indeed, values of K measured at P′ = 17
and 20 MPa are close to values of dry bulk modulus measured at corresponding pressures in
hydrostatic compression. Another explanation could be a different behaviour of the grain-to-grain
contacts in the case of a fully dry rock compared with a water- or oil-saturated system [47].
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The unjacketed pore volume bulk modulus K′′
s was measured over a range of P = 1.5–2.5 MPa

and pore pressure p = 1–2 MPa and K′′
s = 12 ± 4 GPa, which is significantly smaller than K′

s, but
still satisfies the theoretical lower limit: K′′

s > φK′
s [20,30]. Modern syringe pumps allow accurate

measurements of total and incremental volumes (approx. 0.1 µl), meaning that Vf and Vm from
equation (3.6) can be measured precisely. The main error in K′′

s measurements is associated with
the proper evaluation of dead volume VL and the stiffness of the pore pressure measuring system
CL+M, which were calculated from calibration tests with a hollow-cylinder polyvinyl chloride
specimen (K = 3.8 GPa and K′

s = K′′
s = 6.7 GPa). In our tests, the accuracy of VL measurements is

0.5 ml and this causes the reported large range of K′′
s values. Note that if the unjacketed pore

volume bulk modulus is calculated from stress-dependent parameters K, α and B (equation
(2.14)), then K′′

s is a stress-dependent parameter itself.
Finally, the shear modulus G = 4.1–4.3 GPa calculated from the drained deviatoric loading was

found to be smaller than the undrained one: G = 4.9–5.9 GPa. This violates the requirement of
isotropic poroelasticity, as these two parameters should be the same. Berryman [48] showed that
such a discrepancy in shear moduli can be explained by anisotropy of the tested material. The
reported poroelastic parameters are in some agreement with the experimental observation of
Hart & Wang [23], who performed drained and undrained conventional triaxial tests on Berea
sandstone. They measured K = 3.4–5.9 GPa, Ku = 11.1–14.3 GPa, νu = 0.32–0.37 and B = 0.61–0.75
for the Terzaghi effective pressure of 3–10 MPa; using these data, they found K′

s = 27–34 GPa.

(b) Inelastic response
Five drained and five undrained plane-strain compression experiments were conducted with
increasing axial stress σ1 (axial strain rate = 10−6 s−1) and the cell pressure σ3 constant. We
consider here a pair of drained and undrained tests that were performed with the same initial
value of P′ = 5 MPa (figure 6). The drained test started with P = 8 MPa; σ3 = 8 MPa and p = 3 MPa
were preserved throughout the test. During the undrained test, σ3 = 7 MPa was kept constant;
initial P = 7 MPa and pore pressure p evolved from 2 MPa to 4.5 MPa during elastic compaction
and then decreased to 1.4 MPa at failure due to dilatancy.

The mechanical response is shown in figure 6a, where the peak shear stress tp = 44.4 MPa
for the drained test and tp = 48.1 MPa for undrained. The increase in shear strength cannot
be attributed entirely to dilatant hardening—captured by the first term in equation (2.32)—as
Terzaghi mean stress was also changing and the second term in equation (2.32) contributes.
At failure, in drained compression P′ = 46.2 MPa (p = 3 MPa) and in undrained compression
P′ = 48.4 MPa (p = 1.4 MPa). The behaviour at constant mean stress (dP = 0) is considered in [49].

The total volume strain response (figure 6b) indicates that the specimen tested under
undrained conditions compacted more than the drained specimen during the initial stage of
loading. It is related to the fact that the onset of inelasticity is reached at a larger value of
total shear strain and a larger effective mean stress in the undrained test (γ = 5.0 × 10−3 and
P′ = 24.2 MPa) than in the drained one (γ = 3.1 × 10−3 and P′ = 17.3 MPa). In both cases, the rock
dilated by a smaller amount before failure than it compacted at the beginning of loading.

The plane-strain apparatus and the elastic–plastic decomposition of principal strains (ε1, ε3)
provide increments of plastic volume strain �εp and plastic shear strain �γ p:

�εp = �ε
p
1 + �ε

p
3 = (�εmeas

1 − �εe
1) + (�εmeas

3 − �εe
3) (4.3)

and

�γ p = �ε
p
1 − �ε

p
3 = (�εmeas

1 − �εe
1) − (�εmeas

3 − �εe
3). (4.4)

Dilatancy factor β is calculated from equation (2.26) assuming plane-strain compression. In the
drained test, β is found to be changing at the beginning of plastic deformation and then becoming
approximately constant and equal to 0.45; β is calculated to reach larger values in the undrained
test, increasing to 0.59 and then decreasing to 0.52 at failure (figure 7). This observation is
consistent with the two other pairs of drained and undrained tests performed at approximately

 on August 30, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


18

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150422

.........................................................

model

drained
undrained

undrained

drained

sh
ea

r 
st

re
ss

, t
 (

M
Pa

)

shear strain, g (10–3)

vo
lu

m
e 

st
ra

in
, e

(1
0–3

)

50

40

30

20

10

0
0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

2.5

2.0

1.5

1.0

0.5

0

(a)

(b)

Figure 6. Drained and undrained plane-strain compression experiments with initial P′ = 5 MPa. (a) Shear stress–shear strain
response and model prediction; (b) total volume–shear strain response. (Online version in colour.)

the same P′. Possibly, there is some effect from pore pressure p, which was larger at the onset
of inelasticity and at failure in the undrained tests. However, Sulem & Ouffrokh [50] found no
difference in drained and undrained dilatancy factors measured at the same mean stress for
Fontainebleau sandstone.

The friction coefficient μ is calculated assuming a linear yield function [51]:

μ = τ

P′ + Vo
, (4.5)

where Vo is the uniform triaxial tensile strength and Vo = 7.5 MPa for Berea sandstone [52]. The
friction coefficient μ is found to be increasing from 0.62 at onset of inelasticity to 0.78 at failure
in the drained test and from 0.73 to 0.85 in the undrained test (figure 7). The constant values
that dilatancy and friction attain in the drained test are used for model prediction: β = 0.45 and
μ = 0.78.

The change in interconnected porosity of the tested sandstone was smaller than 0.5% in all
the tests, which is within the accuracy of the initial porosity measurements. Hence φ = φo can be
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Figure 7. Friction coefficients μ and dilatancy factors β for drained and undrained compression experiments with initial
P′ = 5 MPa. (Online version in colour.)

assumed in (2.31) and according to equation (2.14) Keff = BK/α and can be estimated for different
Terzaghi effective mean stress values using the evolution of poroelastic parameters with stress
from table 2. The inelastic hardening modulus H is determined from (2.25) for the drained test:

H = �τ − μ�P
�γ − �τ/G

. (4.6)

To describe the corresponding undrained response, increments of shear stress are calculated from
equation (2.32) by substituting the obtained values of μ, β, G, Keff(P′) and H. The results of the
drained and undrained tests, along with the model prediction, are presented in figure 6a.

The dilatant hardening behaviour is predicted for the undrained test approaching the
maximum shear stress values based on the material parameters from the drained test. The
response given by the model is softer than the experimental undrained response at the early
stages of inelastic response. It is related to the larger value that the dilatancy factor takes at
the beginning of undrained shearing compared with the drained one (figure 7). Additionally,
the effect of intermediate principal stress, hidden in the dP term, and poroelastic anisotropy of
the material [40] contribute to the discrepancy between predicted and the observed undrained
deformation. Drained and undrained tests, where the mean stress can be preserved constant,
provide the opportunity to directly observe dilatant response [49].

5. Conclusion
The behaviour of fluid-saturated rock was studied in the framework of Biot poroelasticity. A series
of hydrostatic, plane-strain and conventional triaxial compression tests were performed on water-
saturated Berea sandstone. Skempton B and Biot α coefficients, drained and undrained bulk
moduli, and inelastic response (dilatancy) were measured. Drained and undrained poroelastic
parameters varied with mean stresses below 35 MPa and the response of the material under
undrained conditions was stiffer than the drained one. The unjacketed bulk modulus K′

s was
directly measured and found to be constant at different mean stresses and K′

s = 30 GPa, 20% lower
than the bulk modulus of quartz, usually assumed for this type of rock. This result is explained
by the presence of non-connected pore space in the sandstone, which also causes the unjacketed
pore bulk modulus K′′

s to be different than K′
s.
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The results of drained and undrained plane-strain compression experiments with constant
minimum principal stress were discussed in the framework of an elasto-plastic, hardening model.
The parameters that govern the inelastic deformation of fluid-saturated rock, i.e. dilatancy factor
β, friction coefficient μ, inelastic hardening modulus H, poroelastic coefficient Keff and shear
modulus G, were calculated from the drained response, and the model provided a first-order
approximation of the undrained inelastic deformation.
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